Distributed machine learning framework for shortest path problems with stochastic weights

dc.contributor.authorAspegrén, Gabriel
dc.contributor.authorNilsson Dahlberg, Olle
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerÅkerblom, Niklas
dc.date.accessioned2023-10-19T13:14:02Z
dc.date.available2023-10-19T13:14:02Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractRange anxiety is one of the most common reasons why customers hesitate to buy an electric car. At the same time, the European Union strives toward a fully electric car fleet. Previous work has shown promising results in designing a self-learning shortest path algorithm for finding the most energy efficient path for an electric vehicle through a road network, using combinatorial multi-armed bandit methods. However, it is desirable to scale the methods for larger networks, for example countries and continents. In this project, we design a distributed framework for shortest path computations on a road network, over a computer cluster, using combinatorial multi-armed bandit methods and machine learning. The system is distributed with Apache Spark and GraphX’s version of the Pregel algorithm. An experimental study is performed to investigate the impact of partition strategy, number of partitions, network size and latency between computer nodes on the total run-time. The results show that partitioning strategy has an significant impact on the run-time and that larger networks benefit more from being partitioned.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/307236
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectShortest path problems
dc.subjectdistributed computing
dc.subjectmulti-armed bandits
dc.titleDistributed machine learning framework for shortest path problems with stochastic weights
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 23-26 GA OND.pdf
Storlek:
1.73 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: