Examensarbeten för kandidatexamen // Bachelor Theses
Länka till denna samling:
Browse
Browsar Examensarbeten för kandidatexamen // Bachelor Theses efter Program "Maskinteknik 300 hp (civilingenjör)"
Visar 1 - 3 av 3
Sökresultat per sida
Sortera efter
- PostDesign och konstruktion av ett energieffektivt spårbundet fordon för deltagande i studenttävlingen Delsbo Electric(2016) Ödman, Daniel; Yring, Ulrika; Bergstedt, Elin; Reckermann, David; Larsson, Carl; Chalmers tekniska högskola / Institutionen för energi och miljö; Chalmers University of Technology / Department of Energy and EnvironmentThe student race Delsbo Electric 2016 is held 28th of May. The race consists of a course of 3.36 km which is a part of Dellenebanan. The aim of this race is to travel this course and consume the least possible amount of energy per person and kilometre. In 2015 the energy consumption was measured to 1.26 watt hours per person and kilometre [Wh/pkm] for the winning team. This project is a bachelor thesis at the department of Energy and Environment at Chalmers University of Technology and aims to design an energy efficient rail bound vehicle to participate in the race. This project is supposed to be repeated yearly, and the following students should be able to improve from this project. To be able to create an energy efficient vehicle, a specification was made which consisted of requirements that the vehicle had to fulfil. The foundation to the design and different components of the vehicle consisted of simulations and theoretical models. The simulations were also used to estimate the vehicles energy consumption. The function of the finished vehicle was tested and the real energy consumption was measured during a test run. The energy consumption was later compared to the simulated values to evaluate if the simulations were made correctly. The vehicle moved steadily on the rails during the test run, and was able to get through the rail switch which was a demand since a switch appears on the race course. The energy consumption at the test run was measured to 1.76 Wh/pkm. The simulation of the test run resulted in 1.82 Wh/pkm when assumptions of completely flat ground was made. However, small variations in the inclination did effect the energy consumption in the simulations distinctly. This project resulted with a vehicle that fulfils the specifications which enables the project group to participate in the race. The energy consumption was, using the simulations tools, estimated to 3.4% deviation from the test run. This estimate is though unsure due to unknown parameters during the test. For the students that will further develop the vehicle the following years, there are many ways to improve the energy efficiency of the vehicle. It is first and foremost the weight of the vehicle that can be cut, but one could also increase the number of passengers on the vehicle to improve the energy efficiency. Constrains that were of significant value to this project were that the energy efficiency did not have any demands to result in a first place in the race. This constraint is set because the experience within the project group is far less then compared to schools that have been participating earlier years. No results from the race will be presented, due to the fact that the date of the race takes place after the report’s completion.
- PostResursbegränsningar för elektrobränslen i ett framtida globalt koldioxidneutralt energisystem(2016) Fürst, Kristoffer; Holmér, Petra; Lindén, Erik; Lundberg, Herman; Olovsson, Johanna; Chalmers tekniska högskola / Institutionen för energi och miljö; Chalmers University of Technology / Department of Energy and EnvironmentElectrofuels is an umbrella term for all carbon based fuels produced by water, carbon dioxide and electricity. If the electricity and carbon dioxide is collected from renewable sources, the fuels become carbon dioxide neutral. Examples of electrofuels are synthetically produced methane, methanol and diesel. The aim of this project is to find out if a global transition to a carbon neutral energy system with electrofuels as the main energy carrier in transports is achievable by 2100 with respect to resources. The production of fuel and renewable electricity from wind and solar power has been studied to identify possible resource constraints. The method used is a literature review which involves collection and compilation of information to answer the questions of the project. Based on the predicted future energy demand, the material and resource needs have been estimated for the production processes; fuel synthesis, electrolysis, carbon capture and electricity generation. Most of the studied technologies are used commercially today. However, carbon capture from air and SOEC-electrolysis, two technologies that currently are in the research stage, have been included since they may contribute to making the production more efficient in the future. The result shows that, with respect to the technologies and materials that have been studied, it can be possible to produce the amount of electrofuels required for a future global energy system. At a large scale, some of the technologies, such as PEM-electrolysis and thin-film solar cells will run into resource constraints. Due to this, these will probably not be able to contribute with a significant part of the total production. Based on the result, it is also clear that platinum-group metals and rare earth metals will be critical for the production of electrofuels using the technologies that have been studied. However, there are usually many alternative materials and technologies available. The conclusion is that with the right combination of technologies, the right mate-rial choices and further research and development, it will be possible to produce electrofuels on a large scale. However, there may be many practical problems, since economical and social aspects have not been examined in this report.
- PostValet mellan matlåda i plast och matlåda i glas(2017) Bogren, Viktoria; Mostafavi, Tina; Chalmers tekniska högskola / Institutionen för energi och miljö; Chalmers University of Technology / Department of Energy and EnvironmentBristen på information om vilken typ av matlåda som resulterar i minsta möjliga miljöpåverkan leder till ett problem för konsumenter som vill göra ett miljömässigt val. Arbetet omfattas av en jämförande livscykelanalys där två specifika matlådor, en i plast och en i glas, jämförs för att behandla problemet för miljömedvetna konsumenter. Syftet är att utifrån livscykelanalysen bestämma vilken av matlådorna som har det minsta CO 2 -fotavtrycket, även benämnt som global uppvärmningspotential (GWP), och därmed har den minsta påverkan på växthuseffekten. Som stöd till analysen av CO 2 -fotavtryck undersöks även energiåtgång under matlådornas livscykler. Arbetet är avgränsat till att endast behandla de in- och utflöden som berör växthuseffekt samt energiåtgång. Funktionen för matlådorna är definierad till att de ska förvara mat under ett läsårs tid. Denna definition samt en enkätstudie ligger till grund för livslängden för respektive matlåda. Livslängden för respektive matlåda medför att en konsument behöver införskaffa två matlådor i plast respektive en matlåda i glas under ett läsår. Resultatet av livscykelanalysen visar att matlådan i glas har ett mindre CO 2 -fotavtryck. Resultatet anses vara robust utifrån parametrarna; livslängd och energikällor. Detta innebär att samma resultat åstadkoms när dessa parametrar förändras. En konsument som vill göra ett miljömässigt bättre val utifrån global uppvärmningspotential bör därmed välja matlådan i glas.